综合精品欧美日韩国产,亚洲欧美日韩综合在线一,神菜美まい久久中文字幕,人人看人人澡97超碰

產品目錄
技術文章
當前位置:首頁 > 技術文章 > 詳細內容
IGBT原理,作用,運用
點擊次數(shù):3806 更新時間:2013-10-31

IGBT(Insulated Gate Bipolar Transistor),絕緣柵雙極型晶體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件, 兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅動電流較大;MOSFET驅動功率很小,開關速度快,但導通壓降大,載流密度小。

  
IGBT綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。非常適合應用于直流電壓為600V及以上的變流系統(tǒng)如交流電機、變頻器、開關電源、照明電路、牽引傳動等領域。


IGBT結構圖左邊所示為一個N溝道增強型絕緣柵雙極晶體管結構, N+區(qū)稱為源區(qū),附于其上的電極稱為源極。P+區(qū)稱為漏區(qū)。器件的控制區(qū)為柵區(qū),附于其上的電極稱為柵極。溝道在緊靠柵區(qū)邊界形成。在漏、源之間的P型區(qū)(包括P+和P-區(qū))(溝道在該區(qū)域形成),稱為亞溝道區(qū)(Subchannel region)。而在漏區(qū)另一側的P+區(qū)稱為漏注入?yún)^(qū)(Drain injector),它是IGBT*的功能區(qū),與漏區(qū)和亞溝道區(qū)一起形成PNP雙極晶體管,起發(fā)射極的作用,向漏極注入空穴,進行導電調制,以降低器件的通態(tài)電壓。附于漏注入?yún)^(qū)上的電極稱為漏極。
IGBT的開關作用是通過加正向柵極電壓形成溝道,給PNP(原來為NPN)晶體管提供基極電流,使IGBT導通。反之,加反向門極電壓消除溝道,切斷基極電流,使IGBT關斷。IGBT的驅動方法和MOSFET基本相同,只需控制輸入極N-溝道MOSFET,所以具有高輸入阻抗特性。當MOSFET的溝道形成后,從P+基極注入到N-層的空穴(少子),對N-層進行電導調制,減小N-層的電阻,使IGBT在高電壓時,也具有低的通態(tài)電壓。


三菱制大功率IGBT模塊編輯本段工作特性靜態(tài)特性
IGBT 的靜態(tài)特性主要有伏安特性、轉移特性和開關特性。
IGBT 的伏安特性是指以柵源電壓Ugs 為參變量時,漏極電流與柵極電壓之間的關系曲線。輸出漏極電流比受柵源電壓Ugs 的控制,Ugs 越高, Id 越大。它與GTR 的輸出特性相似.也可分為飽和區(qū)1 、放大區(qū)2 和擊穿特性3 部分。在截止狀態(tài)下的IGBT ,正向電壓由J2 結承擔,反向電壓由J1結承擔。如果無N+緩沖區(qū),則正反向阻斷電壓可以做到同樣水平,加入N+緩沖區(qū)后,反向關斷電壓只能達到幾十伏水平,因此限制了IGBT 的某些應用范圍。
IGBT 的轉移特性是指輸出漏極電流Id 與柵源電壓Ugs 之間的關系曲線。它與MOSFET 的轉移特性相同,當柵源電壓小于開啟電壓Ugs(th) 時,IGBT 處于關斷狀態(tài)。在IGBT 導通后的大部分漏極電流范圍內, Id 與Ugs呈線性關系。zui高柵源電壓受zui大漏極電流限制,其*值一般取為15V左右。
IGBT 的開關特性是指漏極電流與漏源電壓之間的關系。IGBT 處于導通態(tài)時,由于它的PNP 晶體管為寬基區(qū)晶體管,所以其B 值極低。盡管等效電路為達林頓結構,但流過MOSFET 的電流成為IGBT 總電流的主要部分。此時,通態(tài)電壓Uds(on) 可用下式表示
Uds(on) = Uj1 + Udr + IdRoh
式中Uj1 —— JI 結的正向電壓,其值為0.7 ~1V ;Udr ——擴展電阻Rdr 上的壓降;Roh ——溝道電阻。
通態(tài)電流Ids 可用下式表示:
Ids=(1+Bpnp)Imos
式中Imos ——流過MOSFET 的電流。
由于N+ 區(qū)存在電導調制效應,所以IGBT 的通態(tài)壓降小,耐壓1000V的IGBT 通態(tài)壓降為2 ~ 3V 。IGBT 處于斷態(tài)時,只有很小的泄漏電流存在。
動態(tài)特性
IGBT 在開通過程中,大部分時間是作為MOSFET 來運行的,只是在漏源電壓Uds 下降過程后期, PNP 晶體管由放大區(qū)至飽和,又增加了一段延遲時間。td(on) 為開通延遲時間, tri 為電流上升時間。實際應用中常給出的漏極電流開通時間ton 即為td (on) tri 之和。漏源電壓的下降時間由tfe1 和tfe2 組成。
IGBT的觸發(fā)和關斷要求給其柵極和基極之間加上正向電壓和負向電壓,柵極電壓可由不同的驅動電路產生。當選擇這些驅動電路時,必須基于以下的參數(shù)來進行:器件關斷偏置的要求、柵極電荷的要求、耐固性要求和電源的情況。因為IGBT柵極- 發(fā)射極阻抗大,故可使用MOSFET驅動技術進行觸發(fā),不過由于IGBT的輸入電容較MOSFET為大,故IGBT的關斷偏壓應該比許多MOSFET驅動電路提供的偏壓更高。
IGBT在關斷過程中,漏極電流的波形變?yōu)閮啥?。因為MOSFET關斷后,PNP晶體管的存儲電荷難以迅速消除,造成漏極電流較長的尾部時間,td(off)為關斷延遲時間,trv為電壓Uds(f)的上升時間。實際應用中常常給出的漏極電流的下降時間Tf由圖中的t(f1)和t(f2)兩段組成,而漏極電流的關斷時間
t(off)=td(off)+trv十t(f)
式中,td(off)與trv之和又稱為存儲時間。
IGBT的開關速度低于MOSFET,但明顯高于GTR。IGBT在關斷時不需要負柵壓來減少關斷時間,但關斷時間隨柵極和發(fā)射極并聯(lián)電阻的增加而增加。IGBT的開啟電壓約3~4V,和MOSFET相當。IGBT導通時的飽和壓降比MOSFET低而和GTR接近,飽和壓降隨柵極電壓的增加而降低。
正式商用的IGBT器件的電壓和電流容量還很有限,遠遠不能滿足電力電子應用技術發(fā)展的需求;高壓領域的許多應用中,要求器件的電壓等級達到10KV以上,目前只能通過IGBT高壓串聯(lián)等技術來實現(xiàn)高壓應用。國外的一些廠家如瑞士ABB公司采用軟穿通原則研制出了8KV的IGBT器件,德國的EUPEC生產的6500V/600A高壓大功率IGBT器件已經(jīng)獲得實際應用,日本東芝也已涉足該領域。與此同時,各大半導體生產廠商不斷開發(fā)IGBT的高耐壓、大電流、高速、低飽和壓降、高可靠性、低成本技術,主要采用1um以下制作工藝,研制開發(fā)取得一些新進展。
IGBT 原理方法
IGBT是強電流、高壓應用和快速終端設備用垂直功率MOSFET的自然進化。由于實現(xiàn)一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點。雖然一代功率MOSFET 器件大幅度改進了RDS(on)特性,但是在高電平時,功率導通損耗仍然要比IGBT 技術高出很多。較低的壓降,轉換成一個低VCE(sat)的能力,以及IGBT的結構,同一個標準雙極器件相比,可支持更高電流密度,并簡化IGBT驅動器的原理圖。
導通
IGBT硅片的結構與功率MOSFET 的結構十分相似,主要差異是IGBT增加了P+ 基片和一個N+ 緩沖層(NPT-非穿通-IGBT技術沒有增加這個部分)。如等效電路圖所示(圖1),其中一個MOSFET驅動兩個雙極器件。基片的應用在管體的P+和 N+ 區(qū)之間創(chuàng)建了一個J1結。 當正柵偏壓使柵極下面反演P基區(qū)時,一個N溝道形成,同時出現(xiàn)一個電子流,并*按照功率 MOSFET的方式產生一股電流。如果這個電子流產生的電壓在0.7V范圍內,那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內,并調整陰陽極之間的電阻率,這種方式降低了功率導通的總損耗,并啟動了第二個電荷流。zui后的結果是,在半導體層次內臨時出現(xiàn)兩種不同的電流拓撲:一個電子流(MOSFET 電流); 空穴電流(雙極)。
關斷
當在柵極施加一個負偏壓或柵壓低于門限值時,溝道被禁止,沒有空穴注入N-區(qū)內。在任何情況下,如果MOSFET電流在開關階段迅速下降,集電極電流則逐漸降低,這是因為換向開始后,在N層內還存在少數(shù)的載流子(少子)。這種殘余電流值(尾流)的降低,*取決于關斷時電荷的密度,而密度又與幾種因素有關,如摻雜質的數(shù)量和拓撲,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導通問題,特別是在使用續(xù)流二極管的設備上,問題更加明顯。
鑒于尾流與少子的重組有關,尾流的電流值應與芯片的溫度、IC 和VCE密切相關的空穴移動性有密切的關系。因此,根據(jù)所達到的溫度,降低這種作用在終端設備設計上的電流的不理想效應是可行的。
阻斷與閂鎖
當集電極被施加一個反向電壓時, J1 就會受到反向偏壓控制,耗盡層則會向N-區(qū)擴展。因過多地降低這個層面的厚度,將無法取得一個有效的阻斷能力,所以,這個機制十分重要。另一方面,如果過大地增加這個區(qū)域尺寸,就會連續(xù)地提高壓降。 第二點清楚地說明了NPT器件的壓降比等效(IC 和速度相同) PT 器件的壓降高的原因。
當柵極和發(fā)射極短接并在集電子施加一個正電壓時,P/N J3結受反向電壓控制。此時,仍然是由N漂移區(qū)中的耗盡層承受外部施加的電壓。
IGBT在集電極與發(fā)射極之間有一個寄生PNPN晶閘管,如圖1所示。在特殊條件下,這種寄生器件會導通。這種現(xiàn)象會使集電極與發(fā)射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會引起器件擊穿問題。晶閘管導通現(xiàn)象被稱為IGBT閂鎖,具體地說,這種缺陷的原因互不相同,與器件的狀態(tài)有密切關系。通常情況下,靜態(tài)和動態(tài)閂鎖有如下主要區(qū)別:
當晶閘管全部導通時,靜態(tài)閂鎖出現(xiàn)。 只在關斷時才會出現(xiàn)動態(tài)閂鎖。這一特殊現(xiàn)象嚴重地限制了安全操作區(qū) 。 為防止寄生NPN和PNP晶體管的有害現(xiàn)象,有必要采取以下措施: 防止NPN部分接通,分別改變布局和摻雜級別。 降低NPN和PNP晶體管的總電流增益。 此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結溫的關系也非常密切;在結溫和增益提高的情況下,P基區(qū)的電阻率會升高,破壞了整體特性。因此,器件制造商必須注意將集電極zui大電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。
發(fā)展歷史1979年,MOS柵功率開關器件作為IGBT概念的即已被介紹到世間。這種器件表現(xiàn)為一個類晶閘管的結構(P-N-P-N四層組成),其特點是通過強堿濕法刻蝕工藝形成了V形槽柵。
80年代初期,用于功率MOSFET制造技術的DMOS(雙擴散形成的金屬-氧化物-半導體)工藝被采用到IGBT中來。[2]在那個時候,硅芯片的結構是一種較厚的NPT(非穿通)型設計。后來,通過采用PT(穿通)型結構的方法得到了在參數(shù)折衷方面的一個顯著改進,這是隨著硅片上外延的技術進步,以及采用對應給定阻斷電壓所設計的n+緩沖層而進展的[3]。幾年當中,這種在采用PT設計的外延片上制備的DMOS平面柵結構,其設計規(guī)則從5微米先進到3微米。
90年代中期,溝槽柵結構又返回到一種新概念的IGBT,它是采用從大規(guī)模集成(LSI)工藝借鑒來的硅干法刻蝕技術實現(xiàn)的新刻蝕工藝,但仍然是穿通(PT)型芯片結構。[4]在這種溝槽結構中,實現(xiàn)了在通態(tài)電壓和關斷時間之間折衷的更重要的改進。
硅芯片的重直結構也得到了急劇的轉變,先是采用非穿通(NPT)結構,繼而變化成弱穿通(LPT)結構,這就使安全工作區(qū)(SOA)得到同表面柵結構演變類似的改善。
這次從穿通(PT)型技術先進到非穿通(NPT)型技術,是zui基本的,也是很重大的概念變化。這就是:穿通(PT)技術會有比較高的載流子注入系數(shù),而由于它要求對少數(shù)載流子壽命進行控制致使其輸運效率變壞。另一方面,非穿通(NPT)技術則是基于不對少子壽命進行殺傷而有很好的輸運效率,不過其載流子注入系數(shù)卻比較低。進而言之,非穿通(NPT)技術又被軟穿通(LPT)技術所代替,它類似于某些人所謂的“軟穿通”(SPT)或“電場截止”(FS)型技術,這使得“成本—性能”的綜合效果得到進一步改善。
1996年,CSTBT(載流子儲存的溝槽柵雙極晶體管)使第5代IGBT模塊得以實現(xiàn)[6],它采用了弱穿通(LPT)芯片結構,又采用了更先進的寬元胞間距的設計。目前,包括一種“反向阻斷型”(逆阻型)功能或一種“反向導通型”(逆導型)功能的IGBT器件的新概念正在進行研究,以求得進一步優(yōu)化。
IGBT功率模塊采用IC驅動,各種驅動保護電路,高性能IGBT芯片,新型封裝技術,從復合功率模塊PIM發(fā)展到智能功率模塊IPM、電力電子積木PEBB、電力模塊IPEM。PIM向高壓大電流發(fā)展,其產品水平為1200—1800A/1800—3300V,IPM除用于變頻調速外,600A/2000V的IPM已用于電力機車VVVF逆變器。平面低電感封裝技術是大電流IGBT模塊為有源器件的PEBB,用于艦艇上的導彈發(fā)射裝置。IPEM采用共燒瓷片多芯片模塊技術組裝PEBB,大大降低電路接線電感,提高系統(tǒng)效率,現(xiàn)已開發(fā)成功第二代IPEM,其中所有的無源元件以埋層方式掩埋在襯底中。智能化、模塊化成為IGBT發(fā)展熱點。
現(xiàn)在,大電流高電壓的IGBT已模塊化,它的驅動電路除上面介紹的由分立元件構成之外,現(xiàn)在已制造出集成化的IGBT驅動電路.其性能更好,整機的可靠性更高及體積更小。
研發(fā)進展IGBT(絕緣柵雙極晶體管)作為新型電力半導體場控自關斷器件,集功率MOSFET的高速性能與雙極性器件的低電阻于一體,具有輸進阻抗高,電壓控制功耗低,控制電路簡單,耐高壓,承受電流大等特性,在各種電力變換中獲得極廣泛的應用。與此同時,各大半導體生產廠商不斷開發(fā)IGBT的高耐壓、大電流、高速、低飽和壓降、高可靠、低本錢技術,主要采用1um以下制作工藝,研制開發(fā)取得一些新進展。[1]
1、低功率IGBT
IGBT應用范圍一般都在600V、1KA、1KHz以上區(qū)域,為滿足家電行業(yè)的發(fā)展需求,摩托羅拉、ST半導體、三菱等公司推出低功率IGBT產品,實用于家電行業(yè)的微波爐、洗衣機、電磁灶、電子整流器、照相機等產品的應用。
2、U-IGBT
U(溝槽結構)--TGBT是在管芯上刻槽,芯片元胞內部形成溝槽式柵極。采用溝道結構后,可進一步縮小元胞尺寸,減少溝道電阻,進步電流密度,制造相同額定電流而芯片尺寸zui少的產品?,F(xiàn)有多家公司生產各種U—IGBT產品,適用低電壓驅動、表面貼裝的要求。
3、NPT-IGBT
NPT(非傳統(tǒng)型)--IGBT采用薄硅片技術,以離子注進發(fā)射區(qū)代替高復雜、高本錢的厚層高阻外延,可降低生產本錢25%左右,耐壓越高本錢差越大,在性能上更具有特色,高速、低損耗、正溫度系數(shù),無鎖定效應,在設計600—1200V的IGBT時,NPT—IGBT可靠性zui高。西門子公司可提供600V、1200V、1700V系列產品和6500V高壓IGBT,并推出低飽和壓降DLC型NPT—IGBT,依克賽斯、哈里斯、英特西爾、東芝等公司也相繼研制出NPT—IGBT及其模塊系列,富士電機、摩托羅拉等在研制之中,NPT型正成為IGBT發(fā)展方向。
4、SDB--IGBT
鑒于目前廠家對IGBT的開發(fā)非常重視,三星、快捷等公司采用SDB(硅片直接鍵合)技術,在IC生產線上制作第四代高速IGBT及模塊系列產品,特點為高速,低飽和壓降,低拖尾電流,正溫度系數(shù)易于并聯(lián),在600V和1200V電壓范圍性能優(yōu)良,分為UF、RUF兩大系統(tǒng)。
5、超快速IGBT
整流器IR公司的研發(fā)重點在于減少IGBT的拖尾效應,使其能快速關斷,研制的超快速IGBT可zui大限度地減少拖尾效應,關斷時間不超過2000ns,采用特殊高能照射分層技術,關斷時間可在100ns以下,拖尾更短,重點產品專為電機控制而設計,現(xiàn)有6種型號,另可用在大功率電源變換器中。
6、IGBT/FRD
IR公司在IGBT基礎上推出兩款結合FRD(快速恢復二極管)的新型器件,IGBT/FRD有效結合,將轉換狀態(tài)的損耗減少20%,采用TO—247外型封裝,額定規(guī)格為1200V、25、50、75、100A,用于電機驅動和功率轉換,以IGBT及FRD為基礎的新技術便于器件并聯(lián),在多芯片模塊中實現(xiàn)更均勻的溫度,進步整體可靠性。
7、IGBT功率模塊
IGBT功率模塊采用IC驅動,各種驅動保護電路,高性能IGBT芯片,新型封裝技術,從復合功率模塊PIM發(fā)展到智能功率模塊IPM、電力電子積木PEBB、電力模塊IPEM。PIM向高壓大電流發(fā)展,其產品水平為1200—1800A/1800—3300V,IPM除用于變頻調速外,600A/2000V的IPM已用于電力機車VVVF逆變器。平面低電感封裝技術是大電流IGBT模塊為有源器件的PEBB,用于艦艇上的導彈發(fā)射裝置。IPEM采用共燒瓷片多芯片模塊技術組裝PEBB,大大降低電路接線電感,進步系統(tǒng)效率,現(xiàn)已開發(fā)成功第二代IPEM,其中所有的無源元件以埋層方式掩埋在襯底中。智能化、模塊化成為IGBT發(fā)展熱門。
對比輸出特性與轉移特性
IGBT的伏安特性是指以柵極電壓VGE為參變量時,集電極電流IC與集電極電壓VCE之間的關系曲線。IGBT的伏安特性與BJT的輸出特性相似,也可分為飽和區(qū)I、放大區(qū)II和擊穿區(qū)III三部分。IGBT作為開關器件穩(wěn)態(tài)時主要工作在飽和導通區(qū)。IGBT的轉移特性是指集電極輸出電流IC與柵極電壓之間的關系曲線。它與MOSFET的轉移特性相同,當柵極電壓VGE小于開啟電壓VGE(th)時,IGBT處于關斷狀態(tài)。在IGBT導通后的大部分集電極電流范圍內,IC與VGE呈線性關系。
IGBT與MOSFET的對比:
MOSFET全稱功率場效應晶體管。它的三個極分別是源極(S)、漏極(D)和柵極(G)。
主要優(yōu)點:熱穩(wěn)定性好、安全工作區(qū)大。
缺點:擊穿電壓低,工作電流小。
IGBT全稱絕緣柵雙極晶體管,是MOSFET和GTR(功率晶管)相結合的產物。它的三個極分別是集電極(C)、發(fā)射極(E)和柵極(G)。
特點:擊穿電壓可達1200V,集電極zui大飽和電流已超過1500A。由IGBT作為逆變器件的變頻器的容量達250kVA以上,工作頻率可達20kHz。
檢測IGBT判斷極性
首先將萬用表撥在R×1KΩ擋,用萬用表測量時,若某一極與其它兩極阻值為無窮大,調換表筆后該極與其它兩極的阻值仍為無窮大,則判斷此極為柵極(G )其余兩極再用萬用表測量,若測得阻值為無窮大,調換表筆后測量阻值較小。在測量阻值較小的一次中,則判斷紅表筆接的為集電極(C);黑表筆接的為發(fā)射極(E)。
IGBT判斷好壞
將萬用表撥在R×10KΩ擋,用黑表筆接IGBT 的集電極(C),紅表筆接IGBT 的發(fā)射極(E),此時萬用表的指針在零位。用手指同時觸及一下柵極(G)和集電極(C),這時IGBT 被觸發(fā)導通,萬用表的指針擺向阻值較小的方向,并能站住指示在某一位置。然后再用手指同時觸及一下柵極(G)和發(fā)射極(E),這時IGBT 被阻斷,萬用表的指針回零。此時即可判斷IGBT 是好的。
IGBT檢測注意事項
任何指針式萬用表皆可用于檢測IGBT。注意判斷IGBT 好壞時,一定要將萬用 表撥在R×10KΩ擋,因R×1KΩ擋以下各檔萬用表內部電池電壓太低,檢測好壞時不能使IGBT 導通,而無法判斷IGBT 的好壞。此方法同樣也可以用于檢測功率場效應晶體管(P-MOSFET)的好壞。
模塊簡介IGBT是Insulated Gate Bipolar Transistor(絕緣柵雙極型晶體管)的縮寫,IGBT是由MOSFET和雙極型晶體管復合而成的一種器件,其輸入極為MOSFET,輸出極為PNP晶體管,它融和了這兩種器件的優(yōu)點,既具有MOSFET器件驅動功率小和開關速度快的優(yōu)點,又具有雙極型器件飽和壓降低而容量大的優(yōu)點,其頻率特性介于MOSFET與功率晶體管之間,可正常工作于幾十kHz頻率范圍內,在現(xiàn)代電力電子技術中得到了越來越廣泛的應用,在較高頻率的大、中功率應用中占據(jù)了主導地位。
若在IGBT的柵極和發(fā)射極之間加上驅動正電壓,則MOSFET導通,這樣PNP晶體管的集電極與基極之間成低阻狀態(tài)而使得晶體管導通;若IGBT的柵極和發(fā)射極之間電壓為0V,則MOS 截止,切斷PNP晶體管基極電流的供給,使得晶體管截止。IGBT與MOSFET一樣也是電壓控制型器件,在它的柵極—發(fā)射極間施加十幾V的直流電壓,只有在u*的漏電流流過,基本上不消耗功率。
等效電路IGBT模塊的選擇
IGBT模塊的電壓規(guī)格與所使用裝置的輸入電源即試電電源電壓緊密相關。其相互關系見下表。使用中當IGBT模塊集電極電流增大時,所產生的額定損耗亦變大。同時,開關損耗增大,使原件發(fā)熱加劇,因此,選用IGBT模塊時額定電流應大于負載電流。特別是用作高頻開關時,由于開關損耗增大,發(fā)熱加劇,選用時應該降等使用。
使用中的注意事項
由于IGBT模塊為MOSFET結構,IGBT的柵極通過一層氧化膜與發(fā)射極實現(xiàn)電隔離。由于此氧化膜很薄,其擊穿電壓一般達到20~30V。因此因靜電而導致柵極擊穿是IGBT失效的常見原因之一。因此使用中要注意以下幾點:
在使用模塊時,盡量不要用手觸摸驅動端子部分,當必須要觸摸模塊端子時,要先將人體或衣服上的靜電用大電阻接地進行放電后,再觸摸; 在用導電材料連接模塊驅動端子時,在配線未接好之前請先不要接上模塊; 盡量在底板良好接地的情況下操作。 在應用中有時雖然保證了柵極驅動電壓沒有超過柵極zui大額定電壓,但柵極連線的寄生電感和柵極與集電極間的電容耦合,也會產生使氧化層損壞的振蕩電壓。為此,通常采用雙絞線來傳送驅動信號,以減少寄生電感。在柵極連線中串聯(lián)小電阻也可以抑制振蕩電壓。
此外,在柵極—發(fā)射極間開路時,若在集電極與發(fā)射極間加上電壓,則隨著集電極電位的變化,由于集電極有漏電流流過,柵極電位升高,集電極則有電流流過。這時,如果集電極與發(fā)射極間存在高電壓,則有可能使IGBT發(fā)熱及至損壞。
在使用IGBT的場合,當柵極回路不正?;驏艠O回路損壞時(柵極處于開路狀態(tài)),若在主回路上加上電壓,則IGBT就會損壞,為防止此類故障,應在柵極與發(fā)射極之間串接一只10KΩ左右的電阻。
在安裝或更換IGBT模塊時,應十分重視IGBT模塊與散熱片的接觸面狀態(tài)和擰緊程度。為了減少接觸熱阻,在散熱器與IGBT模塊間涂抹導熱硅脂。一般散熱片底部安裝有散熱風扇,當散熱風扇損壞中散熱片散熱不良時將導致IGBT模塊發(fā)熱,而發(fā)生故障。因此對散熱風扇應定期進行檢查,一般在散熱片上靠近IGBT模塊的地方安裝有溫度感應器,當溫度過高時將報警或停止IGBT模塊工作。
保管時的注意事項
一般保存IGBT模塊的場所,應保持常溫常濕狀態(tài),不應偏離太大。常溫的規(guī)定為5~35℃ ,常濕的規(guī)定在45~75%左右。在冬天特別干燥的地區(qū),需用加濕機加濕; 盡量遠離有腐蝕性氣體或灰塵較多的場合; 在溫度發(fā)生急劇變化的場所IGBT模塊表面可能有結露水的現(xiàn)象,因此IGBT模塊應放在溫度變化較小的地方; 保管時,須注意不要在IGBT模塊上堆放重物; 裝IGBT模塊的容器,應選用不帶靜電的容器。
IGBT模塊由于具有多種優(yōu)良的特性,使它得到了快速的發(fā)展和普及,已應用到電力電子的各方各面。因此熟悉IGBT模塊性能,了解選擇及使用時的注意事項對實際中的應用是十分必要的。[1]
如何做好IGBT的保護*,IGBT是一種用MOS來控制晶體管的新型電力電子器件,具有電壓高、電流大、頻率高、導通電阻小等特點,被廣泛應用在變頻器的逆變電路中。但由于IGBT的耐過流能力與耐過壓能力較差,一旦出現(xiàn)意外就會使它損壞。為此,必須對IGBT進行相關保護。一般我們從過流、過壓、過熱三方面進行IGBT保護電路設計。
IGBT承受過電流的時間僅為幾微秒,耐過流量小,因此使用IGBT首要注意的是過流保護。那么該如何根據(jù)IGBT的驅動要求設計過流保護呢?
IGBT的過流保護可分為兩種情況:(1)驅動電路中無保護功能;(2)驅動電路中設有保護功能。對于*種情況,我們可以在主電路中要設置過流檢測器件;針對第二種情況,由于不同型號的混合驅動模塊,其輸出能力、開關速度與du/dt的承受能力不同,使用時要根據(jù)實際情況恰當選用。對于大功率電壓型逆變器新型組合式IGBT過流保護則可以通過封鎖驅動信號或者減小柵壓來進行保護。
過壓保護則可以從以下幾個方面進行:
●盡可能減少電路中的雜散電感。
●采用吸收回路。吸收回路的作用是;當IGBT關斷時,吸收電感中釋放的能量,以降低關斷過電壓。
●適當增大柵極電阻Rg。
IGBT的過熱保護一般是采用散熱器(包括普通散熱器與熱管散熱器),并可進行強迫風冷。
傳統(tǒng)與新型IGBT保護模式對比在傳統(tǒng)的使用和設計IGBT的過程中,基本上都是采用粗放式的設計模式,所需余量較大,系統(tǒng)龐大,但仍無法抵抗來自外界的干擾和自身系統(tǒng)引起的各種失效問題。那么該如何突破傳統(tǒng)的IGBT系統(tǒng)電路保護設計來解決上述問題呢?
傳統(tǒng)保護模式:
防護方案防止柵極電荷積累及柵源電壓出現(xiàn)尖峰損壞IGBT——可在G極和E極之間設置一些保護元件,如下圖的電阻RGE的作用,是使柵極積累電荷泄放(其阻值可取5kΩ);兩個反向串聯(lián)的穩(wěn)壓二極管V1和V2,是為了防止柵源電壓尖峰損壞IGBT。另外,還有實現(xiàn)控制電路部分與被驅動的IGBT之間的隔離設計,以及設計適合柵極的驅動脈沖電路等。然而即使這樣,在實際使用的工業(yè)環(huán)境中,以上方案仍然具有比較高的產品失效率——有時甚至會超出5%。相關的實驗數(shù)據(jù)和研究表明:這和瞬態(tài)浪涌、靜電及高頻電子干擾有著緊密的關系,而穩(wěn)壓管在此的響應時間和耐電流能力遠遠不足,從而導致IGBT過熱而損壞。[1]


傳統(tǒng)保護模式和新型保護模式電路對比
傳統(tǒng)保護模式和新型保護模式電路對比
新型保護模式:
將傳統(tǒng)的穩(wěn)壓管改為新型的瞬態(tài)抑制二極管(TVS)。一般柵極驅動電壓約為15V,可以選型SMBJ15CA。該產品可以通過IEC61000-4-5浪涌測試10/700US6kV。
TVS反應速度極快(達PS級),通流能力遠超穩(wěn)壓二極管(可達上千安培),同時,TVS對靜電具有非常好的抑制效果。該產品可以通過IEC61000-4-2接觸放電8kV和空氣放電15kV的放電測試。
將傳統(tǒng)電阻RG變更為正溫度系數(shù)(PPTC)保險絲。它既具有電阻的效果,又對溫度比較敏感。當內部電流增加時,其阻抗也在增加,從而對過流具有非常好的抑制效果。
IGBT的應用及設計作為電力電子重要大功率主流器件之一,IGBT已經(jīng)廣泛應用于家用電器、交通運輸、電力工程、可再生能源和智能電網(wǎng)等領域。在工業(yè)應用方面,如交通控制、功率變換、工業(yè)電機、不間斷電源、風電與太陽能設備,以及用于自動控制的變頻器。在消費電子方面,IGBT用于家用電器、相機和手機。
IGBT產品市場現(xiàn)狀分析國內市場需求急劇上升曾使得IGBT市場一度被看好。雖然長期來看,IGBT是一個值得期待的市場,可是到目前為止IGBT的核心技術和產業(yè)為大多數(shù)歐美IDM半導體廠商所掌控,本土廠商想要打破國外企業(yè)對國內IGBT市場壟斷,還需要很多努力。并且隨著各國政府都將削減可再生能源及交通等領域的支出,IGBT市場能否再度增長?根據(jù)的調查報告顯示,各種IGBT器件和模塊的銷售額在2013年將有一定程度的復蘇,2014年稍稍減速,待經(jīng)濟復蘇并穩(wěn)定后,從2015年開始將穩(wěn)定增長。雖然2013年IGBT市場增長趨勢有所下降,但隨著國內技術的進步,其發(fā)展前景還是十分被看好的。

分享到:

加入收藏 | 返回列表 | 返回頂部
沅陵县| 宁陕县| 佛教| 泰兴市| 乐至县| 阜宁县| 涟水县| 汝南县| 九寨沟县| 长治市| 元朗区| 吉安县| 鹤峰县| 博客| 开江县| 黄龙县| 宁远县| 龙里县| 宜州市| 新干县| 荔波县| 呼图壁县| 鹤壁市| 望谟县| 元阳县| 南投县| 清涧县| 娱乐| 宣威市| 乌兰浩特市| 秦皇岛市| 梁山县| 泸定县| 卓资县| 凭祥市| 西乌| 施甸县| 内黄县| 通州区| 五河县| 行唐县|